Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12725/11437
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Gaikwad, Santosh | - |
dc.contributor.advisor | Gandhi, Shaily | - |
dc.contributor.author | Sahajramani, Dipen | - |
dc.date.accessioned | 2020-11-04T10:24:23Z | - |
dc.date.available | 2020-11-04T10:24:23Z | - |
dc.date.issued | 2019 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12725/11437 | - |
dc.title | Pedestrian mobility modelling : a spatial machine learning approach. | - |
dc.barcode | 021575 | - |
dc.pages | ii,51,liii-lxivp.,1sheet | - |
dc.classno | MG TH-0181 SAH | - |
Appears in Collections: | Thesis (Faculty of Technology_PG) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
MG TH-0181.pdf Restricted Access | 5.03 MB | Adobe PDF | Request a copy | |
MG TH-0181 Summary.pdf | 382.24 kB | Adobe PDF | Preview PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.